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Abstract

Coherent vibrational oscillations in femtosecond transient-absorption spec-

tra have been interpreted since the 1990s using a model based on Gaus-

sian wavepacket dynamics. The oscillations are often studied using probe-

wavelength dependent plots of the oscillation amplitude and phase that are

known as vibrational coherence spectra. Here we show that restricting the

basis of the wavepacket to a small number of eigenstates clarifies several

features in vibrational coherence spectra. Improving the understanding of

vibrational coherence signatures will help distinguish them from signatures

of electronic coherence that arise from measurements of strongly coupled

excitonic states in molecular aggregates and light-harvesting proteins.

1. Introduction

A femtosecond laser pulse can excite a nonstationary vibrational wavepacket

on the electronic states of molecules. The coherent oscillations of such a
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wavepacket produce oscillations of the nonlinear optical signal as the de-

lay time between the pump and probe pulses is varied in a time-resolved

spectroscopy measurement [1]. In transient-absorption spectroscopy, the am-

plitude and phase of the observed oscillations vary with probe wavelength,

and these features of the oscillations began to be studied intently in the

late 1980s [2]. The oscillations were observed in transient-absorption mea-

surements of conjugated laser-dye molecules and pigment–protein complexes

throughout the 1990s [3–13], and the effects of pulse chirp on the oscillations

were explored [14, 15]. Subsequently, Champion and coworkers developed a

theoretical framework to model coherent vibrational oscillations in systems

having nonradiative decay mechanisms such as nonadiabatic transfer [16].

More recently, researchers have gained a renewed interest in using the co-

herent wavepackets to resolve the dynamic Stokes shift in pigment–protein

complexes and molecules [17–20], to explore coherence in electron-transfer re-

actions [21], to quantify ultrafast protein solvation dynamics [22], to search

for signatures of nonadiabatic dynamics [23, 24], to study the excited-state

dynamics of a molecule used for the medical application of photodynamic

therapy [25], and to characterize the evolution of vibrational coherence in

isomerization reactions and electronic internal conversion [26–30]. Other

theoretical explorations included broadening the application of the doorway–

window approach [31, 32] and studying wavepacket dynamics under intense

pumping [33]. Cina and coworkers recently presented an edifying theoreti-

cal description of the coherent vibrational oscillations in transient–absorption

spectra [34]. In these studies, researchers often analyze the probe-wavelength

dependence of the coherent wavepacket dynamics in the frequency domain,
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Figure 1: (bottom) Illustration of oscillatory signals commonly observed in transient-

absorption spectroscopy measurements conducted with broadband laser pulses. (top) A

vibrational coherence spectrum displays the amplitude and phase profiles of the signal at a

selected oscillation frequency, which, respectively, reveal the characteristic amplitude node

and abrupt π phase shift.

see Fig. (1), where a Fourier transformation of the oscillatory signal yields

a vibrational coherence spectrum composed of both amplitude, A(λ), and

phase, φ(λ), profiles. One appealing aspect of this analysis method is that it

isolates the coherent oscillations at a single frequency even when the pump

pulse excites multiple Franck–Condon active vibrational modes.

These foundational works revealed two characteristic signatures of coher-

ent vibrational wavepacket dynamics that are readily apparent in a vibra-

tional coherence spectrum. There is an abrupt phase shift of the oscillations

as a function of probe wavelength, and the phase shift is accompanied by an

amplitude node. These two characteristic features typically appear at the

probe wavelength that corresponds to the maximum signal in a steady-state

fluorescence spectrum. In previous works, the coherent oscillations were in-

terpreted through a model of coherent wavepacket dynamics [2, 4, 7, 35]. In
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this description—depicted in the left panel of Figure (2)—the pump pulse

promotes a Gaussian wavepacket to the displaced excited electronic state.

The wavepacket then evolves in phase space, oscillating on the excited-state

potential energy surface. The probe pulse returns the wavepacket to the

ground electronic state resulting in the stimulated emission of a photon. For

a conceptual interpretation, this transition is often treated in the classical

limit where the emitted photon must have energy equal to the instantaneous

gap between the excited and ground electronic states [35, 36]. For displaced

harmonic oscillator potentials, the energy gap is proportional to the inter-

nuclear displacement, q. As the wavepacket evolves, the probe wavelength

resolved oscillation spectrum essentially follows the wavepacket: The probe

signal increases when the wavepacket is at an internuclear displacement value

with a peak at that probe energy and decreases when the wavepacket moves

to another internuclear displacement value. Considering the wavepacket dy-

namics from the perspective of a single probe wavelength, as the wavepacket

moves in and out of the vicinity of that internuclear displacement value,

the signal will increase and decrease. On either side of the minimum of the

potential, the wavepacket—because it has some width—will pass through

once per oscillation period, yielding an oscillation frequency that matches

the vibrational oscillation. At the minimum of the potential, the wavepacket

is observed twice per cycle—once passing in each direction—and the stim-

ulated emission signal oscillates at twice the vibrational frequency. Cina

and coworkers recently presented a related, qualitative interpretation of the

phase flip based on a schematic illustration of the two-dimensional dynamics

of a multi-mode vibrational wavepacket in Fig. (11) of Ref. 34. In partic-

4



pump
probe

Figure 2: Wavepacket models. (left) Conventional model is based on evolution of Gaussian

wavepacket in the excited state implicitly composed of an infinite number of vibrational

eigenfunctions. (right) Trunctating the basis to a limited number of excited-state vibra-

tional eigenfunctions reveals the origin of the amplitude node and phase shift arise in

largely from the node and sign change in the n = 1 eigenstate. Frequencies ωA and ωF

are the absorption and fluorescence maxima, respectively, and ωge is the frequency cor-

responding to the vertical shift of the excited-state potential. Vibrational frequency ω0

characterizes the oscillator, and ∆ is the displacement.

ular, their work emphasizes that it is not necessary for the wavepacket to

pass through the absolute minimum of the excited state potential during

its evolution as the multi-dimensional surface for a molecule with multiple

Franck–Condon active vibrational modes contains a locus of points where

the potential energy difference is equal to the fluorescence maximum.

While the predictions arising from the full Gaussian wavepacket model are

somewhat—but not completely—consistent with laboratory measurements,

certain aspects can be difficult to conceptualize. Here we use a basis-set

truncation method to offer a complementary explanation of the features in a

vibrational coherence spectrum. In particular, we discuss: (i) The presence of

5



a node in the oscillation amplitude. (ii) The presence of an abrupt π change

in the oscillation phase. (iii) Both the node and phase shift occur at the

wavelength corresponding to the maximum of the steady-state fluorescence

spectrum. (iv) The presence of small variations in the phase of the oscillations

near—but not at—the amplitude node. (v) Modest asymmetry of the two

peak amplitudes.

2. Theory

Here we seek to understand a transient–absorption spectroscopy mea-

surement conducted with broadband laser pulses, in which the pump pulse

creates a wavepacket on the excited-state potential energy surface that is

a superposition of vibrational eigenfunctions. We choose to use the eigen-

functions of the conventional quantum harmonic oscillator, and, as shown in

Figure (2), we focus on the wavepacket that is on the excited electronic state,

|ψ〉 =
∑

n cn |e, n〉, plotted as a function of the displacement, q. Following

the Franck–Condon principle, for small displacements, the most significant

contributions to the wavepacket will be the two lowest-energy eigenfunctions,

n ∈ {0, 1}. The two eigenfunctions will interfere, and the superposition will

evolve at the fundamental frequency of the mode, ω0. The two eigenfunc-

tions cannot interfere where one has zero amplitude, and therefore there will

be a node in the interference where the 〈q|e, 1〉 function has zero amplitude.

The abrupt π phase change in the oscillations is a consequence of the sign

change in 〈q|e, 1〉. Both the node and phase shift occur at the minimum

of the excited-state potential, qmin. Below we expand on this swift visual

interpretation of the wavepacket in a truncated basis and show how it is
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consistent with additional features observed in the measured spectra and

provides physical insight.

We consider the doorway-window approach [37] for vibrationally abrupt

pulses and focus on stimulated emission because the excitation pulse in many

measurements has sufficient bandwidth to select primarily for oscillations on

the excited electronic state [4, 17, 20]. This approximation is appropriate

when the transition-dipole moment is independent of internuclear displace-

ment value and the pump pulse has a spectrum that encompasses the absorp-

tion spectrum [34, 35]. We treat the doorway function as the state prepared

on the excited electronic state by the pump pulse [35, 36] and follow a Franck–

Condon approach to calculate a distribution of vibrational eigenfunctions in

the electronic excited state due to the instantaneous promotion of a portion

of the ground-state eigenfunction to the excited electronic state. We then

propagate the wavepacket in the field-free excited-state potential. For con-

venience and to emphasize the shape, we assume that (1) the system can

be represented as a pure state, (2) use a temperature of 0 K, and (3) use

a classical window function. We address the quantized window function in

Appendix A.

We identify the two electronic states as |g〉 and |e〉, each with a progression

of vibrational eigenfunctions. We represent the ground state—the lowest-

energy vibrational eigenfunction of the ground electronic state—at time zero

as |g, 0〉 and the nth vibrational level of the excited state as |e, n〉. The

density matrix of the ground state in the basis of the displaced excited-state
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potential at time t = 0 when the pump pulse excites the molecule is given by

ρ (0) =
∑
n,n′

cn0c
∗
n′0 |e, n〉 〈e, n′| , (1)

where the coefficients cab = 〈e, a|g, b〉 give the amplitude of each vibrational

eigenstate in the excited electronic state. We reserve indices n (m) for the

excited (ground) state. The system then evolves on the excited electronic

state for time τ , and the density matrix in the q basis is then given by

ρ (q; τ) = 〈q| exp
{
−iĤeτ

}
ρ (0) exp

{
+iĤeτ

}
|q〉

=
∑
n,n′

cn0c
∗
n′0 exp{−i (En − En′) τ}ψn (q − qmin)ψ∗n′ (q − qmin) , (2)

where Ĥe is the nuclear Hamiltonian on the excited electronic state, En is the

energy of the nth vibrational eigenstate above the minimum of the excited

state potential, and the ψ(q) are the vibrational eigenfunctions. In prac-

tice, when analyzing coherent vibrational dynamics in a measured transient–

absorption spectrum, researchers typically subtract the static and slowly

varying signals and then fast Fourier transform the residual oscillations to

produce the vibrational coherence spectrum. Hence we focus on the Fourier

transform of the density matrix over τ and find

ρ̃ (q;ω) = Fτ{ρ (q; τ)}

=
∑
n,n′

cn0c
∗
n′0ψn (q − qmin)ψ∗n′ (q − qmin) δ (ω − (En − En′)) . (3)

This predicts a progression of frequencies for each vibrational mode where

the oscillation amplitude and phase are defined at each internuclear displace-

ment value and are determined by sums of products of the time-independent
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eigenfunctions. To clarify the discussion, we initially treat the ground and

excited electronic states as displaced harmonic oscillators, where the energy

gap between eigenstates, En−En′ = (n− n′)ω0, is constant, where ω0 is the

fundamental frequency of the vibrational mode and ~ = 1. Second harmonic

oscillations have been observed in gas-phase transient-absorption measure-

ments of molecular I2 [35], and were observed to contribute very weakly in a

measurement of a condensed-phase sample [25]. Therefore we focus on pos-

itive frequency terms that oscillate at the fundamental frequency—meaning

only the n − n′ = 1 terms—and identify the oscillation amplitude for the

fundamental frequency, MHO (q), as

MHO (q) =
∑
n=1

cn0c
∗
n−1,0ψn (q − qmin)ψ∗n−1 (q − qmin) . (4)

Vibrational coherence spectra are displayed as a function of probe wave-

length, λ, and therefore we transform q to λ using the potential-energy dif-

ference between the two states, Ve (q) − Vg (q). For the harmonic oscillator,

the probe frequency, ω, becomes

ω = Ve (q)− Vg (q) = ωge +
1

2

ω0

x2
0

(q − qmin)2︸ ︷︷ ︸
excited state

− 1

2

ω0

x2
0

(q − (qmin −∆))2︸ ︷︷ ︸
ground state

= ωF −
1

2

ω0

x2
0

2∆ (q − qmin) , (5)

where the classical turning point of the n = 0 state is x0 =
√

1/meffω0,

meff is the effective mass of the mode, and we have substituted the peak of

the fluorescence spectrum as the frequency at the minimum of the excited-

state potential, ωF = ωge− 1
2
ω0

x20
∆2. In the simplest case in which only the two

lowest-energy vibrational levels are excited on the electronic excited state, we
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can write the amplitude of the oscillations as a function of probe wavelength,

MHO
01 (λ) as

MHO
0,1 (λ) ∝ 1

ω0∆

(
1

λF
− 1

λ

)
exp

[
−4π2c2x2

0

ω2
0∆2

(
1

λF
− 1

λ

)2
]

(6)

The amplitude and phase profiles of the vibrational coherence spectrum as

depicted in Fig. (1) are then written as

A(λ) =
∣∣M(λ)

∣∣ (7a)

φ(λ) = Im
{

ln(M(λ))
}
. (7b)

3. Results and Discussion

A key insight of this work is that the node and phase shift observed in

the vibrational coherence spectrum can be understood swiftly using a visual

inspection of the two lowest-energy vibrational eigenfunctions of the excited

electronic state. As an initial assessment of the validity of this basis-set

truncation method, we compare the dynamics of the wavepacket projected

into either the complete basis or a truncated basis in Fig. (3). We chose a

displacement of ∆/x0 = 0.5 as a representative example. Normalizing the

displacement to the classical turning point yields results that are independent

of the oscillator’s frequency. We compare the wavepacket in the full and two-

eigenstate bases in the left (“full”) and middle (“n = {0, 1}”) panels, respec-

tively. Visually, the wavepacket dynamics in the two bases are quite similar.

Upon closer inspection, the full wavepacket simulation shows smooth transi-

tions between the turning points; in contrast, the two-eigenstate wavepacket

has a more choppy oscillation character. The difference between the two—

amplified by a factor of 5 in the right panel—demonstrates that the primary
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Figure 3: Comparison of Gaussian wavepacket dynamics in the (left) full and (middle)

two-eigenstate bases for ∆/x0 = 0.5. The structure of the residual in the difference plot

(right) strongly resembles the n = 2 eigenstate.

missing contribution is the n = 2 eigenstate. Inspection of the central panel

reveals that, indeed, along q/x0 = 0.5 in this example the amplitude is a

constant as a function of time, which will produce the node in the ampli-

tude profile of the vibrational coherence spectrum. The phase difference can

be observed by identifying the cosinusoidal character of the time trace for

q/x0 = 0 and the sinusoidal character of the time trace at q/x0 = 1, as exam-

ple. This difference gives rise to the π phase shift in the vibrational coherence

spectrum. Finally, the node and change in phase occur both at q = ∆, which

is qmin in Fig. (2) the minimum of the excited-state potential and will be the

maximum of the steady-state fluorescence spectra in this model.

Next we quantify the projection of the wavepacket into various bases.

For the full basis, we confirmed that the projection is unity for all values

of ∆/x0. Fig. (4) shows that even for a relatively large displacement value

of ∆/x0 = 1, the projection of the wavepacket into the basis of the two

lowest-energy eigenfunctions is greater than 0.9. For displacement values of
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Figure 4: The projection of the wavepacket onto various two-eigenstate bases. The pro-

jection into the n = {0, 1} basis is greater than 0.9 until ∆/x0 ∼ 1.

∆/x0 ≈ 2, it would be slightly better to use a wavepacket composed of the

n = 1 and n = 2 eigenstates rather than the n = 0 and n = 1 eigenstates,

indicating that the coefficients arising from the projection of the ground state

onto the excited-state manifold switch in relative amplitude, |c2|2 > |c0|2, for

this range of displacement values. This small advantage exists again for the

pair of n = {2, 3} and so forth as the displacement value increased further.

These basic evaluations demonstrate that the key features of the full

wavepacket dynamics are reproduced effectively using the lowest two-eigenstate

basis, and therefore we next produce and evaluate the vibrational coherence

spectra. Specifically we will compare the overall amplitude and width of the

oscillations between the two models. Fig. (5) contains a representative ex-

ample and presents the oscillation amplitude and width of the peak of the

vibrational coherence spectrum as functions of ∆/x0.

Fig. (5) presents the vibrational coherence spectrum for ∆/x0 = 1 for

both the full model and the two-eigenstate model. At the large displacement

of ∆/x0 = 1, modest quantitative discrepancies between the two models ap-
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pear. As the displacement increases, the vibrational coherence spectrum is

increasingly composed of higher-energy eigenstates, and therefore the peak

amplitude (peak of A (λ)) of the two-eigenstate model is lower than the infi-

nite eigenstate model. The higher-energy eigenstates have a broader spatial

extent, and the width of the two-eigenstate model is visibly smaller. How-

ever, the shape is qualitatively similar, and in particular the location of the

node and phase change are identical. At the fundamental vibrational fre-

quency, the vibrational coherence spectrum is composed of a sum of pairwise

combinations of eigenstates of the harmonic oscillator (ψnψn+1) and the com-

bined even–odd parity gives a node at q = qmin for every term in the sum.

High-energy pairs (for example {1,2}, {2,3}) have additional nodes in the

product eigenstates, but summing over all pairs as shown in Eqn. (4) leaves

only the one common node at q = qmin.

In the remainder of Fig. (5) we investigate the primary distinctions—

the peak value and the width—between the full wavepacket model and the

two-eigenstate wavepacket model. We use Eqn. (4) to sum the pairwise

contributions where the amplitudes cn of each state are determined by the

overlap integral between the ground state vibrational eigenfunction with the

eigenfunctions in the displaced excited state potential. For the two-eigenstate

model, we truncate the sum at n = 1, for the full model, we use sufficient

eigenstates to ensure we preserve the norm of the excited state wavefunction.

We normalize the peak value in each case by the maximum reached in the full

eigenstate case. The interference terms (ψnψn+1) require a significant am-

plitude in each eigenstate, and therefore the vibrational coherence spectrum

peak value grows for small displacement as the n = 1 state increases in am-
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(a) Representative vibrational coherence

spectrum for a displacement ∆/x0 = 1,

fluorescence peak λF = 600 nm, and ω0

corresponding to a 10 THz (300 cm−1)

mode. The amplitude profile A (λ) is

plotted for full model (blue) and two-

eigenstate model (orange). The phase

profile φ (λ) (green) is identical for both

calculations.
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(b) Peak amplitude and width of the

vibrational coherence spectrum as a

function of the displacement for full-

eigenstate model (blue) and for the

two lowest-energy eigenstate model (or-

ange).

Figure 5: Vibrational coherence spectra from the wavepacket in the two-eigenstate and

full bases.
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plitude. Near ∆/x0 = 1 the peak amplitude reaches a maximum as the am-

plitude is spread over many eigenstates. We emphasize that for ∆/x0 < 0.8

the two models make nearly identical quantitative predictions. Our metric

of ∆/x0 is closely related to the Huang–Rhys factor, S, S = (1/2)(∆/x0)2.

Hence the cut-off value of ∆/x0 ∼ 1 corresponds to S ∼ 0.5. Using that

relation, we compared the results of a joint theory/measurement study [38]

and found that of the 25 modes analyzed in their Table S1, most modes had

S ∼ 0.02 and the largest was S ∼ 0.28. This supports the notion that the

truncated basis approximation has at least moderate utility in the analysis

of laboratory measurements of molecular samples.

Separately, we performed a calculation consistent with the semi-classical

Gaussian wavepacket model. We created a Gaussian wavepacket composed

of 105 point masses with normally distributed initial position and momenta

and propagated each classically on the excited-state potential. A fast Fourier

transform of the time-dependent wavepacket dynamics produced a peak oscil-

lation amplitude as a function of the initial displacement of the wavepacket.

The results (not shown) are identical to the full-eigenstate model shown in

Fig. (5).

Next we quantify the width of this unusually shaped amplitude profile.

We define the width as σ2 = 〈ω2〉 − 〈ω〉2 and calculate

σ =
1

N

√∫ ∞
−∞

A (ω)ω2dω −
[∫ ∞
−∞

A (ω)ωdω

]2

, (8)

where N =
√∫∞

−∞A (ω) dω is a normalization. This expression is analytic

in the two-eigenstate harmonic oscillator basis, and we find σHO
0,1 = ω0∆/x0.

In Fig. (5) we observe the anticipated behavior for the width of the two-
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eigenstate model. At large ∆/x0 the width of the full-eigenstate model in-

creases at a faster rate than the two-eigenstate model.

Short pump pulses typically excite several Franck–Condon active modes

in a molecule, where most of this work has considered only a single active

mode. In a recent article, Cina and colleagues described how the excitation

of several Franck–Condon modes with small displacements contributes to

the overall out-of-phase oscillations on either side of the fluorescence peak

observed in the time dependence of transient–transmittance measurements

[34]. In Appendix B we analyze the case of an electronic excited state with

two Frack–Condon active vibrational modes. We find that the node and

phase shift are unchanged, however we find that additional modes increase

the width of the amplitude profiles of the vibrational coherence spectra.

In many measurements the amplitude profile of a vibrational coherence

spectrum is asymmetric, meaning that the peak on one side of the node has

more amplitude than the peak on the other side of the node. Often it is the

case that the higher-energy side has more amplitude than the lower-energy

side [16–18, 21, 22, 26]. This result was not reproduced by any simulations

using the harmonic oscillator eigenfunctions. Therefore we hypothesized that

an anharmonic oscillator may reproduce the measured asymmetry, as well

as, perhaps, the gradual slopes that are oftentimes observed in the phase

profiles. We chose to use the Morse oscillator because there are analytic

expressions for its eigenfunctions [39] 1 For a diatomic molecule, the Morse

oscillator successfully captures the sharp rise in energy at small internuclear

1The expression of the normalization constant, N(λ, n), in Eqn. (41) of Ref. 39 needs

an additional factor of
√
α.
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separations and the asymptote at large internuclear separations, and this

model is harmonic near the equilibrium distance, re, and use this to quantify

the potential via an effective classical turning point for the lowest-energy

state, x0.

In Fig. (6) we present the two lowest-energy vibrational eigenfunctions,

the wavepacket dynamics in the two-eigenstate and full bases, as well as their

vibrational coherence spectra. The parameters of this example system were

set such that there were 34 bound vibrational eigenstates. Panel (a) shows

that the n = 1 eigenstate is visually asymmetric as a function of q, and there-

fore we expect some type of asymmetry to the vibrational coherence spectra.

The time-domain plots of the wavepacket in the full and two-eigenstate bases

in panel (b) reveal—just like the model using harmonic oscillator—that the

major factor missing from the dynamics of the two-eigenstate model is the

two-node character of the n = 2 eigenstate. Yet the same overall qualitative

aspects remain for the Morse oscillator model that existed for the harmonic

oscillator model: overall the dynamics are well-reproduced even when the

basis is restricted to two eigenstates, the phase shift will arise due to the cos-

inusoidal and sinusoidal sides of the wavepacket oscillations, and the ampli-

tude node will arise because the equilibrium internuclear displacement value

has no oscillation amplitude. Finally, panel (c) displays the vibrational co-

herence spectra for both the full and two-eigenstate wavepackets. Unlike the

analytic solution used to study the harmonic oscillator, here we performed

a direct fast Fourier transformation of wavepacket oscillations to produce

the vibrational coherence spectra. Both amplitude profiles are asymmetric

in width—which primarily arises due to the inversion required to transform
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wavepacket.

Figure 6: Results from Morse oscillator for representative set of parameters with 34 bound

eigenstates.
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from the frequency variable to the wavelength variable—as well as in height—

which is far more interesting and results from the anharmonic nature of the

potential. To explore the relation between the peak height ratio and the

anharmonicity further, we ran a series of simulations at varying amounts of

anharmonicity. The data revealed two key results. First, as anharmonic-

ity increased, the relative peak-height difference increased, supporting our

conclusion that that anharmonicity leads to the difference in peak heights.

Second, the vibrational coherence spectra that result from the full and trun-

cated bases began to diverge very slightly as anharmonicity increased. For

example, in the case of 66 bound states, the agreement was nearly perfect,

whereas for the case of only 7 bound states, minor quantitative differences

were visible.

Finally, in Fig. 6, the phase profile of the two-eigenstate wavepacket is

flat on either side of the phase shift, which is identical to that of the harmonic

oscillator model. In contrast, the phase profile of the wavepacket in the full

basis has some gradual phase changes on either side of the node. These grad-

ual phase changes arise from an indirect effect of the anharmonic potential.

The anharmonic potential yields an unequal spacing of energy levels, which

leads to a distribution of oscillation frequencies of the wavepacket. Because

the oscillations decay—both in the simulation and in molecules measured

in the laboratory—the peaks in the frequency domain have non-zero widths

and can overlap. This interference yields the gradual phase changes. In a

measurement, the gradual phase change could indicate interference from two

distinct modes that have similar frequencies or from a single mode that is

anharmonic, such as the one modeled here.
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The results from the harmonic and Morse oscillator models show that

restricting the basis set of the wavepacket to the two lowest-energy eigen-

functions clarifies the origin of the amplitude node and phase shift that are

commonly observed in measured vibrational coherence spectra. The models

are based on certain approximations, and therefore a few limitations warrant

discussion. First, if the bandwidth of the pump pulse does not encompass

the absorption profile, coherent wavepackets will be launched on both the

excited and ground electronic states. The two wavepackets will both pro-

duce coherent oscillations in transient–absorption spectra and likely lead to

nodes at both the absorption and fluorescence maxima, with additional phase

shifts. The same effects would be observed if the pump pulse were not well-

compressed or if the transition-dipole moment were not independent of the

internuclear separation, such as Herzberg–Teller coupling [40, 41]. Second,

we have not addressed more complicated potential energy surfaces, such as

those with barriers to photoproduct intermediates [22] or those that induce

nonadiabatic transitions resulting from avoided crossings or conical intersec-

tions in photochemical reactions [16, 42]. Third, the simulations excluded

damping arising from a dissipative system–bath interaction [1]. Damping

would primarily serve to broaden the peaks along the frequency axis that

arise from Fourier transformation of the time-delay variable. For any partic-

ular mode, the influence on a vibrational coherence spectrum—which arises

typically from a slice at the peak of the amplitude along this frequency axis—

is likely to be negligible. However, if a sample had two or more modes of

very similar frequencies, damping may cause overlap and interference among

the features.
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4. Conclusions

We have evaluated the amplitude and phase profiles of vibrational co-

herence spectra observed in transient absorption spectroscopy, focusing on

insights gleaned by truncating the basis of vibrational eigenstates. This de-

scription yielded an intuitive picture of the source of the shape of the ampli-

tude and phase profiles, particularly when focusing on only the two lowest-

energy vibrational eigenstates. Using anharmonic potentials produced vibra-

tional coherence spectra that were asymmetric in relative peak amplitude,

which is a common occurrence in measured spectra. In addition, the mod-

els led to predictions about the shape of the vibrational coherence spectrum

that could be compared with experimental measurements. These details are

a key method by which one can distinguish vibrational coherences from elec-

tronic coherences arising from strongly coupled excitonic states in molecular

aggregates. This distinction is critical for studies of electronic energy trans-

fer mechanisms in molecular aggregates and photosynthetic light-harvesting

proteins.

An ideal molecular sample to which these predictions can be compared

would have a high fluorescence quantum yield with minimal photactivity and

a large Stokes shift to distinguish clearly the ground-state wavepackets from

those on the excited state. Finally, it would be convenient for the molecule

to have a limited number of dominant vibrational modes so that excessive

post-processing of the dataset is not necessary. Creating a significant signal

from excited-state wavepackets and suppressing wavepacket oscillations on

the ground state requires a laser pulse shorter than the vibrational period

[35], hence an ideal molecule would have an absorption peak and a fluores-
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cence peak in a wavelength range where few-cycle laser pulses are readily

produced, typically 500 nm to 800 nm.
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Appendix A. Window in a Vibrational Eigenstate Basis

In posing this model, we have used the doorway-window approach in

which we have treated the doorway and time evolution in a vibrational eigen-

state basis, but we treated the window classically. We assumed that project-

ing the wavepacket back into the ground electronic state requires only that

the laser energy match the instantaneous energy gap between the ground

and excited state potential at the internuclear displacement value of the

wavepacket. In other words, we chose a convenient, analytic route for the

transformation to Eqns. (7b) because we aimed to study not the full nonlin-

ear optical spectroscopy measurement but rather a key conceptual interpre-

tation.

To provide a more complete model of a transient–absorption spectroscopy

measurement, in this Appenix we consider projecting the excited-state wavepacket

to the ground electronic state using a window operator represented in a vibra-

tional eigenstate basis. Without line broadening, this leaves only transitions

at discrete energies ωn,m = En−Em. The q dependence becomes obscured be-

cause the Franck–Condon factor for the transition between any two states is

a constant, independent of time. The laser frequency dependence then arises

from the sum of, potentially, many contributing |e, n〉 → |g,m〉 transitions

with distinct amplitudes and phases.

We can rewrite the time-dependent density matrix ρ (τ) from Eqn. (2)

to exclude the q basis

ρ (τ) =
∑
n,n′

cn0c
∗
n′0 exp{−i (n− n′)ω0τ} |e, n〉 〈e, n′| , (A.1)

where we assume harmonic oscillator eigenstates.
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We follow prior work—specifically Eqn. (3.8a) in Ref. 37—and assume

that the laser pulse duration is short compared to the nuclear oscillations

but long compared to the dephasing of the electronic transition; we calculate

a bare window operator of the form

W (ω) =
∑
n,n′

|e, n〉 〈e, n′|

×

[∑
m

cnmc
∗
n′m

[
1

ω − ωn′,m + iγ/2
− 1

ω − ωn,m − iγ/2

]]
, (A.2)

where γ is the dephasing rate of the electronic transition. Up to overall

constants, the spectrally resolved signal is given by

S (ω; τ) ∝ Tr [W (ω) ρ (τ)] , (A.3)

where Tr[. . . ] is the trace evaluated here in a basis of the vibrational eigen-

states on the excited electronic state. We find

S (ω; τ) ∝
∑
n,n′,m

cnmc
∗
n′mcn′0c

∗
n0 exp [−i (n′ − n)ω0τ ]

×
[

1

ω − ωn′,m + iγ/2
− 1

ω − ωn,m − iγ/2

]
. (A.4)

We choose to focus on the terms oscillating at the fundamental vibrational

frequency (n′ = n + 1). In this case, the vibrational coherence spectrum is

given by

M (ω) =
∑
n,m

cnmc
∗
n+1,mcn+1,0c

∗
n0

[
1

ω − ωn+1,m + iγ/2
− 1

ω − ωn,m − iγ/2

]
.

(A.5)

This is a sum of Lorentzian lines centered on the |e, n〉 → |g,m〉 transition

energies with various amplitudes and phases. The amplitudes are dominated

by the overlap integrals cnm.
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We compared the calculated vibrational coherence spectrum for the purely

vibronic model with the classical window model and found that at large dis-

placements the two spectra overlap very well and at small displacements the

classical model predicts a much narrower width. This highlights one of the

limitations of any classical interpretation of wavepacket dynamics. For small

displacements, the relative variation in ω = Ve (q)−Vg (q) over the full motion

of the wavepacket is less than ω0, however, from the vibrational eigenstates

perspective, the transitions are discrete and, for the harmonic oscillator, are

spaced by ω0.

Appendix B. Two-Mode Analysis

We consider two vibrational modes on the excited electronic state which

lead to a two-dimensional wavepacket on the excited electronic state. In addi-

tion to oscillations at the fundamental frequency and overtones of each mode,

the wavepacket now includes combination bands composed of sums and dif-

ferences of the two frequencies, as has been observed in prior multi-mode

analyses [25, 43]. While the combination bands merit further investigation,

we focus the discussion here on the fundamental frequencies to be consistent

with the remainder of this work.

The wavefunction is composed of a product of the basis functions of the

eigenstates ψ
(s)
n (qs), where we label the different vibrational eigenfunctions

and modes with s = 1 or 2. While the wavefunctions are independent in

an internuclear displacement basis, the difference potential Ve − Vg depends

on both modes. For a given value of the laser frequency ω there are many

combinations of q1 and q2 where Ve − Vg = ω that must be accounted for
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to calculate the full contribution to the vibrational coherence spectrum. For

the harmonic oscillator case, these points make a straight line through the

two-dimensional space so for this case we perform a Radon transform [44]

to project the q dependent amplitude profiles along lines of constant ω. As

an example we calculate the mode amplitude profile at the fundamental

frequency ω1 of the s = 1 mode as a function of laser frequency assuming that

only the lowest energy vibrational eigenstates needed to create the coherence

contribute to the signal and find

M (ω) ∝− ω1ζ1

ω2
2ζ

2
2x2

√
1 +

(
ω1ζ1x2

ω2ζ2x1

)2
(

1 +

(
ω1ζ1

ω2ζ2

)2
)−3/2

× (ω − ωF ) exp

[
− 1

(ζ2ω2)2 + (ζ1ω1)2 (ω − ωF )2

]
, (B.1)

where ωs and xs are the fundamental frequency and classical turning point

of the s vibrational mode and the normalized displacement ζs = ∆s/xs is

defined for convenience. We highlight that the general form of the equation is

unchanged, but the width of the vibrational coherence spectrum is increased

due to the additional mode. A more thorough treatment could consider the

details of the shape as additional eigenstates are included.
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